Yield and Soil Properties in Two Crop / Grazing Rotations under Inversion and No Tillage

Alan J. Franzluebbers

Soil Scientist

John A. Stuedemann

Animal Scientist

Watkinsville GA

Rationale

- ✓ Integration of crops and livestock could provide benefits to production and the environment
- ✓ Soil organic matter is a critical component in maintaining soil quality
- ✓ Permanent pastures are known to improve soil organic C and N
- ✓ Cropping systems in rotation with pastures have not been evaluated in detail
- ✓ Climatic conditions (i.e. spring vs. summer cropping) could modify success of a system

Objective

- ✓ Quantify plant and animal productivity and measures of soil quality in response to three management factors:
 - Tillage
 - (a) conventional tillage and (b) no tillage
 - Cropping system
 - (a) summer grain winter cover crop (SGWC)
 - (b) winter grain summer cover crop (WGSC)
 - Cover crop management
 - (a) unutilized and (b) grazed by cattle

Hypotheses

✓ <u>Tillage</u>:

- Yield not affected by tillage
- Soil properties better with NT than CT

✓ Cropping system:

- Yield potential higher in summer due to higher temperature, but yield variability greater in summer due to less consistent precipitation
- Soil more compacted with grazing in winter

✓ Cover crop:

- Crop *yield* reduced with grazing due to compaction and less surface residue, but overall yield potential higher due to animal gain
- Soil properties better without grazing

Methods

- ✓ Set of 18 paddocks (0.7-ha each) previously in tall fescue for 20 yr on Cecil sandy loam
- √ 4 replications of 8 treatments after paddocks split into grazed (0.5 ha) and ungrazed (0.2 ha) areas
- ✓ All crops received 40 kg NH₄NO₃-N ha⁻¹
- ✓ Grain yield from entire paddock
- ✓ Yearling steers 1st year; cow/calf pairs 2nd year
- ✓ Production results from 2002/03 and 2003/04
- ✓ Soil collected (4-cm diam) from composite of 8 or 5 cores
 - Initiation, end of Year 1, end of Year 2

Methods

Summer Grain – Winter Cover Crop SGWC – (sorghum / rye)

Cover Crop

		<u>-</u>	
Crop component	Unutilized	Grazed	
	Mg ha ⁻¹		
Rye stover	7.4 >>	> 0.6	
Sorghum grain	2.3	2.2	
Sorghum stover	3.7 >	3.0	

Summer Grain – Winter Cover Crop SGWC – (sorghum / rye)

Crop component	СТ		NT
	Mg ha ⁻¹		
Sorghum grain	2.3		2.2
Sorghum stover	2.5	<<	4.2
Rye stover (ungrazed)	7.0	<	7.9
Animal component	CT		NT
Stocking rate (head ha-1)	6.6	<	9.3
Animal gain (kg ha-1)	294	<	485
Calf daily gain (kg head-1 d-1)	1.02		1.09

Winter Grain – Summer Cover Crop WGSC – (wheat / pearl millet)

Cover Crop

Crop component	Unutiliz	Unutilized		
-		Mg ha ⁻¹		
Millet stover	10.7	>>>	1.0	
Wheat grain	2.1	<<	2.5	
Wheat stover	1 1	<	1.3	

Winter Grain – Summer Cover Crop WGSC – (wheat / pearl millet)

Crop component	CT		NT
	Mg ha ⁻¹		
Wheat grain	2.4		2.2
Wheat stover	1.1	<	1.3
Millet stover (ungrazed)	8.9	<<	12.5
Animal component	CT		<u>NT</u>
Stocking rate (head ha-1)	7.3		7.0
Animal gain (kg ha-1)	404		433
Calf daily gain (kg head-1 d-1)	0.93		1.05

Soil Bulk Density

Penetration Resistance

- ✓ Soil resistance tended to be higher under NT than under CT.
- ✓ Soil resistance was not adversely affected by cattle traffic with cover crop
- ✓ Surface soil resistance tended to be only slightly higher with winter grazing compared with summer grazing

Soil Organic C Concentration

Stock of Soil Organic C

	S	Soil		Surface Residue	
Time	CT	NT	CT	NT	
0-20-cm depth		Mg (C ha ⁻¹		
Initiation	37.9	39.2	1.7	1.7	
End of 1 yr	33.2 <	< 38.9	0.2 <<	< 2.2	
End of 2 yr	33.9 <<	<< 40.2	0.5 <<	< 4.0	

[✓] Carbon was immediately redistributed within the soil profile with CT, but not greatly mineralized

[✓] Surface residue C was lost with CT, but accumulated with NT

[✓] At the end of 2 years, total C stock (soil + residue) under CT was 5.2 Mg C ha⁻¹ lower and under NT was 3.3 Mg C ha⁻¹ higher than initial C stock (21% difference from initial level of 40.3 Mg ha⁻¹)

Integrated Agricultural Evaluation

Animal Production

Crop Production

Soil Quality

✓ An integrated agricultural evaluation with profit, production, soil, and environmental considerations is planned at the end of 3 years

Conclusion

✓ Grazing of cover crops can increase production opportunities without negatively affecting soil quality

Acknowledgements

- ✓ This research was supported by a grant from the Soils and Soil Biology program of the USDA-NRI, Agr. No. 2001-35107-11126
- ✓ Excellent technical support was received from Steve Knapp, Eric Elsner, Stephanie Steed, Heather Hart, Robert Martin, and several Univ. Georgia students